Camera captures sun’s atmospheric sparkles

Using an innovative new camera on board a sounding rocket, an international team of scientists have captured the sharpest images yet of the Sun’s outer atmosphere. The team discovered fast-track ‘highways’ and intriguing ‘sparkles’ that may help answer a long-standing solar mystery.

The UCLan team used a sounding rocket to launch the NASA High Resolution Coronal Imager (Hi-C) from the White Sands Missile Range in New Mexico. During its short flight, the Hi-C team obtained images of the solar atmosphere (the solar corona) five times sharper than anything seen before and acquired data at a rate of about one image every five seconds.

Video: The ultra-high resolution images captured by NASA’s High-resolution Coronal Imager uncovered an amazing amount of detail within the hot outer atmosphere of the Sun (the Corona). The camera imaged electrified plasma at about 1 million degrees C and exposed phenomena scientists had never seen before.

In the new images, small clumps of electrified gas (plasma) at a temperature of about one million degrees Celsius are seen racing along highways shaped by the Sun’s magnetic field. These blobs travel at around 80 km per second (the equivalent of 235 times the speed of sound on Earth), fast enough to travel the distance from Glasgow to London in 7 seconds. The highways are 450 km across, roughly the length of Ireland from north to south.

The flows of material are inside a so-called solar filament, a region of dense plasma that can erupt outwards from the Sun. These eruptions, known as coronal mass ejections (CMEs), carry billions of tonnes of plasma into space. If a CME travels in the right direction it can interact with the Earth, disturbing the terrestrial magnetic field in a ‘space weather’ event that can have a range of destructive consequences from damaging satellite electronics to overloading power grids on the ground. The discovery and nature of the solar highways allows scientists to better understand the driving force for these eruptions and help predict with greater accuracy when CMEs might take place.

Another new set of images could help explain an enduring mystery of the Sun. Astronomers have long struggled to understand why, with a temperature of two million degrees, the corona is around 400 times hotter than the solar surface. Hi-C images reveal dynamic bright dots which switch on and off at high speed.

These ‘sparkles’ typically last around 25 seconds, are about 680 km across (the size of the UK) and release at least 1024 (one million million million million) Joules of energy in each event or around 10,000 times the annual energy consumption of the population of the UK (based on information from the UK Department of Energy and Climate Change). The sparkles are thus a clear signal that enormous amounts of energy are being added into the corona and may then be released violently to heat the plasma.

Partners in the development of the Hi-C telescope include the Smithsonian Astrophysical Observatory in Cambridge, Mass.; L-3Com/Tinsley Laboratories in Richmond, California; Lockheed Martin’s Solar Astrophysical Laboratory in Palo Alto, California; the University of Central Lancashire in Lancashire, UK; and the Lebedev Physical Institute of the Russian Academy of Sciences in Moscow. The telescope includes mirrors made at the Marshall Space Flight Center. The Harvard-Smithsonian Center for Astrophysics developed an innovative approach to mounting these mirrors to preserve the mirror resolution capability. UCLan provided the camera electronic box. –Source: Royal Astronomical Society

You might also like:

  1. X-Class flares released by the Sun, March 6, captured by Atmospheric Imaging Assembly
  2. Astronomers release highest-resolution images ever of the Sun’s corona
  3. HI-C adds big piece to the solar corona puzzle
  4. Solar splashdown
  5. Smithsonian instrument reveals Sun’s innermost corona
 

 

Tags: , , ,